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VISCOSITY OF DILUTE AQUEOUS
SOLUTIONS OF SOME DIOLS

MOHAMMAD A. SALEH*, SHAHANARA BEGUM,
SYEDA K. BEGUM and BILKIS A. BEGUM!'

Department of Chemistry, University of Chittagong,
Chittagong-4331, Bangladesh

{ Received 28 July 1998)

Viscosities of the aqueous solutions of ethane-1,2-diol, propane-1,2-diol, butane-1,2-
diol, butane-1,4-diol and butane-2,3-diol up to a composition range of 0.1 mole fraction
of diol have been determined at temperatures varying from 303.15 to 323.15K, with an
interval of 5K. The viscosities and excess viscosities increase progressively with the
increase of diol concentration. The free energies, excess free energies, entropies and
excess entropies of activation for viscous flow also increase with diol concentration. The
magnitude of all these parameters, except entropies and excess entropies, follows the
order, butane-2,3-diol + water > butane-1,4-diol + water ~ butane-1,2-diol + water >
propane-1,2-diol + water > ethane-1,2-diol + water. The hydrophilic and hydrophobic
effects are considered for the interpretation of viscosities and the thermodynamic
parameters of all aqueous diols, excepting ethane-1,2-diol + water system, for which the
observed properties have been explained mainly in terms of hydrophilic effect.

Keywords: Excess viscosity; thermodynamic activation parameters; some diols

1. INTRODUCTION

This is a part of our continuing research on volumetric and viscometric
properties of aqueous organic systems. Previously, we reported the
volumetric and viscometric properties of acetone + water system [1]
and aqueous solutions of varieties of monohydric alcohols [2, 3]. It
was shown that hydrophobic hydration strongly influences the
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volumetric and viscometric properties of these systems, particularly in
water-rich region. We now extend our work to aqueous systems of
polyhydric alcohols, and as a first step, to dihydric alcohols. In course
of our literature survey we came across some very interesting works on
aqueous solutions of diols. An excellent paper on comprehensive
thermodynamic investigation of ethane-1,2-diol-water was published
by Huot et al. [4], which serves as an essential reference to the relevant
fields of research. A number of other papers [5—7] that deal with
excess thermodynamic properties, such as, excess free energy, excess
enthalpy and excess entropy and excess partial molar volumes of the
system, water + ethane-1,2-diol, seem to have some relevance with
the present work. A couple of other works that deal with viscosities of
the aqueous solutions of ethane-1,2-diol and propane-1,2-diol [8, 9] are
directly linked with our work. The works involving aqueous solutions
of higher member diols are rather scarce. A few recent studies [10—12]
concerning the volumetric behaviour of aqueous solutions of higher
member diols are of some significance in relation with our present
work. Unfortunately, no viscometric work on aqueous butanediols, so
far as we are aware, is available.

We report in this paper the viscosities of aqueous solutions of
ethane-1,2-diol, propane-1,2-diol, butane-1,2-diol, butane-1,4-diol and
butane-2,3-diol up to a limited concentration range of 0.1 mole fraction
of the diols. In the present investigation our main objectives are:

(a) To resolve whether hydrophobic effect exists in the systems; as the
previous papers, just mentioned above, raise some controversy as
to its existence. Obviously, this necessitates the measurement of
physical properties in very dilute aqueous solutions of diols.

(b) To see the effect of chain length on the viscosities of the systems.

(c) To examine how the viscosities of the aqueous diol solutions are
influenced by the relative position of the hydroxyl groups in
butanediols.

2. EXPERIMENTAL

The diols used for experiment were procured from Aldrich, with
quoted purities — ethane-1,2-diol (99+ %), propane-1,2-diol (99%),
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butane-1,2-diol (99%), butane-1,4-diol (99%) and butane-2,3-diol
(99%). The chemicals were used without any further treatment except
that each of them was kept over molecular sieves (4A) for at least two
weeks prior to its use. The water used for preparation of solutions was
twice distilled.

The density was measured by a 25ml. specific gravity bottle
previously calibrated. Ostwald viscometers of the British Standard
Institution with sufficiently long efflux time were used, so that no
kinetic energy correction was necessary in the viscosity measurement.
The time of flow was recorded by a timer accurate up to +0.1sec. An
analytical balance weighing up to an accuracy of £0.0001 g was used
in the density measurement. The temperature was controlled by a
thermostatic water bath with fluctuation of +0.05K.

Excess viscosity, 7%, was calculated by the equation,

nf =n—exp(X|Iny + Xz Inn) (1)

where 7 is the measured viscosity, X is the mole fraction of water and
71 is its viscosity in the pure state, X5 is the mole fraction of diol and
712 is its viscosity in the pure state.

The enthalpy of activation, AH *, and entropy of activation, AS™, for
viscous flow were calculated by using the Eyring equation of the form,

' A * *
o MVm _AH* AS

AN =~ RT R (2)

All the terms of this equation have their usual meaning. In all cases we
obtained excellent linear fitting of In 5V, /AN versus 1/T indicated by
very high correlation coefficients in the range of temperature studied.
AH™ and AS™ were calculated by the least squares method. By using
the values of AH* and AS”, the free energy of activation for viscous
flow, AG*, was calculated by the following equation,

AG* = AH* — TAS* (3)

The excess thermodynamic functions, AG*%, AH*F and AS*F were
calculated by the following equation,

YE=Y— (XY + XpY)) (4)
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where Y is the measured thermodynamic property, Y, and Y, are the
properties of the pure components, water and diols, respectively, and
X; and X, are the respective mole fractions.

3. RESULTS AND DISCUSSION

The densities and viscosities of the pure diols at different temperatures
are shown in Table I. The high values of the data reveal that the diols
are highly associated through intermolecular and intramolecular
hydrogen bonds. Both the densities and viscosities of the pure diols
are in good agreement with the literature values, except for butane-2,3-
diol, for which the data differ widely from those of Sun et al. [14]. The
extrapolated viscosity of the authors to 293.2K is 66.56 mPa s, which
is widely different from 107.9 mPas, taken from Ref. [7] of their paper.
Our extrapolated value to this temperature is 146.9 mPas, again too
far to be compared with these values. We are unable to account for
this large discrepancy in the viscosity values of butane-2,3-diol, nor did
Sun et al. [14] ascribe to the discrepancy between their data and the
data referred to in their paper. At this stage we can only guess that the
discrepancy of these values probably lies in the difference in
the proportions of the stereoisomeric meso and DL forms of this diol
available commercially.

The viscosities (1)) and excess viscosities (%) of the diol solutions at
different temperatures are listed in Table II. Figure 1 shows the plots of
viscosity as a function of diol concentration at 303.15 K. The viscosity is
found to increase with the increase of diol concentration. At all other
temperatures, the nature of the viscosity—composition curves are
similar, and therefore, these are not plotted. Within the studied
concentration range, it has been observed that the viscosity varies as,
butane-2,3-diol + water > butane-1,4-diol + water ~ butane-1,2-diol
+ water > propane-1,2-diol + water > ethane-1,2-diol + water. In
Figure 2 the variation of excess viscosities has been shown as a function
of mole fraction of the diols at 303.15 K. The values have been found to
be positive over the whole range of composition studied. The magnitude
of the excess viscosities of the different diol solutions follows the same
order as viscosities. Tanaka et al. [8] showed negative excess viscosities
for ethane-1,2-diol + water and propane-1,2-diol + water systems, in
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3.5 T T T 1 T

7/mPa s

0.5 1 1 1 L 1

0.00 0.02 0.04 0.06 0.08 0.10
X, (Diol)

FIGURE 1 Viscosity as a function of mole fraction of diols at 303.15K. O — ethane-
1,2-diol, ® — propane-1,2-diol, A - butane-1,2-diol, A — butane-1,4-diol, []—butane-
2,3-diol.

contrast to our positive excess viscosities. The discrepancy has arisen,
because the authors calculated excess viscosities by using the equation,
n* = n— (Xym1 + Xan2), which is a different equation from Eq. (1) used
by us.

The thermodynamic activation parameters for viscous flow, such as,
AH*, AG* and AS* for the pure liquids are shown in Table III. The
same parameters and their excess values, AH*E, AG*E and AS*Z for
the solutions of the different systems are shown in Table IV. Figure 3
shows the variation of AG* as a function of mole fraction of diols. The
values are found to increase with the increasing concentration of diols
and vary in the order, butane-2,3-diol + water > butane-1,4-diol +
water ~ butane-1,2-diol + water > propane-1,2-diol + water > ethane-
1,2-diol + water. The variation of the excess free energies, AG*Z as
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2.0 T T T T T

")E/mPa s

-05 | I I 1 L
0.00 0.02 0.04 0.06 0.08 0.10

X, (Diol)

FIGURE 2 Excess viscosity as a function of mole fraction of diols at 303.15K.
Symbols as in Figure 1.

shown in Figure 4, also follows the same order as free energies. The
entropies of activation for viscous flow and their excess values, AS *£, as
a function of mole fraction of diols are shown in Figures 5 and 6,
respectively. The large positive n” and the large positive AG *# of the
systems indicate strong spécific interaction between the diols and water
through the formation of H-bond.

The AS™ values of the pure liquids are found to be positive and
large indicating that these liquids, which are self-associated very
strongly through H-bonding, are disrupted in the activation of the
flow process. The AS*¥ values of the mixtures are also positive and
generally large in magnitude, which suggest that in the solution
systems the species formed through H-bonding are disrupted, perhaps
more severely, in the flow process of the solutions.
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FIGURE 3 Free energy of activation for viscous flow against mole fraction of diols at
303.15K. Symbols as in Figure 1.

In order to obtain some idea about the hydrophobic and/or
hydrophilic character of diols, we wish to lay particular importance to
excess entropies of the systems. At 0.1 mole fraction of diols the excess
entropies are: ethane-1,2-diol (2.55J mol~'K™!), propane-1,2-diol
(9.37Jmol'K™"), butane-1,2-diol (12.66Jmol™'K™"), butane-1,4-
diol (11.75Jmol™'K™!) and butane-2,3-diol (14.60J mol™'K™").
The excess entropies of the aqueous solutions of some well-known
hydrophobic compounds at 0.1 mole fraction of the solutes are: 1-
propanol (14.63 Jmol~'K™"), 2-propanol (21.60Jmol~"K™"), tert-
butanol (23.30Jmol~'K™!), the values have been taken from our
unpublished results. The other hydrophobic compounds have the
AS*% values: 2-methoxyethanol (~12Jmol~'K™') and 1,2-dimetho-
xyethane (~ 131J mol~! K™1); the values have been estimated from the
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FIGURE 4 Excess free energy of activation for viscous flow against mole fraction of
diols at 303.15K. Symbols as in Figure 1.

graphs of the paper of Ref. [15]. All these compounds are characterised
by the rapid increase of excess entropies in the very dilute aqueous
solutions, and therefore, the values are generally large in water-rich
region. Comparing these values, the diols may well be considered to be
hydrophobic substances, except for ethane-1,2-diol, for which AS*£
values are too low. The viscosities of the aqueous solutions of the diols
are thus influenced by both hydrophobic and hydrophilic effects. With
ethane-1,2-diol, however, the effect is predominantly hydrophilic.
Huot et al. [4], Tanaka et al. [8], Sakurai [5] and Corradini et al. [9]
hold the view that ethane-1,2-diol is a weak hydrophobic substance.
By hydrophilic effect, the diols form complexes with water through H-
bond, while the hydrophobic effect promotes the structure of water
molecules surrounding the diols in water-rich region. The two effects
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FIGURE 5 Entropy of activation for viscous flow against mole fraction of diols.
Symbols as in Figure 1.

together increase the viscosity and energy of activation much more
than anticipated, and hence the large positive n° and large positive
AG*F values. In the activation of flow process the structured water
molecules around the hydrophobic diols are disrupted more than the
normal water giving rise to large positive excess entropies.

4. CONCLUSION

The excess viscosities and the excess thermodynamic activation
parameters have been found to be positive for all the aqueous diols
over the studied composition range of up to 0.1 mole fraction of diols.
In order to account for the large positive excess entropies of the
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FIGURE 6 Excess entropy of activation for viscous flow against mole fraction of diols.
Symbols as in Figure 1.

mixtures, we propose that propane-1,2-diol and all other butanediols
under investigation possess hydrophobic character, in addition to their
hydrophilic character. However, the hydrophobic character of ethane-
1,2-diol does not seem to be quite revealing, in view of the very low
excess entropies of its aqueous solution. The excess viscosities, excess
free energies and excess entropies of activation for viscous flow — all
positive and generally large in magnitude, are accounted for by these
concepts.
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